
FhGFS - Performance at the maximum

http://www.fhgfs.com

January 22, 2013

Contents

1. Introduction 2

2. Environment 2

3. Benchmark specifications and results 3
3.1. Multi-stream throughput . 3
3.2. Shared file throughput . 5
3.3. IOPS . 6
3.4. Metadata performance . 7

4. Conclusion 8

A. Used command lines for benchmarks 9
A.1. Multi-stream throughput . 9
A.2. Shared file throughput . 9
A.3. IOPS . 9
A.4. Metadata performance . 9

2

1. Introduction

FhGFS1 is the parallel file system from the Fraunhofer Competence Center for High Performance
Computing2. The distributed metadata architecture of FhGFS has been designed to provide the scal-
ability and flexibility that is required to run today’s most demanding HPC applications. In January
2013, Fraunhofer announced the new major release, named 2012.10. Besides adding interesting new
features, such as on-the-fly replication of file contents and metadata, the new release introduces a
completely redesigned metadata format, which increases performance even more. This document
describes a set of benchmarks performed with FhGFS 2012.10 and shows their results.

2. Environment

Metadata

Storage data

Metadata

Storage data

Clients

20
combined
metadata

and
storage
server

QDR IB

Figure 1: Hardware overview

The benchmarks have been performed on a total of 20 server nodes, which have been used as storage
and as metadata servers at the same time (Fig. 1). Each of the nodes was equipped with the following
hardware:

• 2x Intel Xeon X5660 (2.8 GHz)

• 48 GB DDR-3 RAM
1http://www.fhgfs.com
2http://www.itwm.fraunhofer.de/en/departments/hpc.html

c© 2013 Fraunhofer ITWM

3

• QDR Infiniband (Mellanox MT26428), only one port connected

• 4x Intel 510 Series SSD (RAID 0 with mdraid)

The used operating system was Scientific Linux 6.3 with kernel 2.6.32-279 from the Scientific Linux
distribution.

All software, except FhGFS and the benchmarking tools IOR and mdtest, was installed from the
Scientific Linux repository.

FhGFS version 2012.10-beta1, which is available to the public since 2012/10, was used. All FhGFS
services were configured to use RDMA over Infiniband.

3. Benchmark specifications and results

According to the Parallel File System survey report3 by the Dice Program, the most important file
system metrics for data center representatives are multi-stream throughput, metadata performance
and large block data performance. Although most of the metrics described by the report target on
large files, the Johannes Gutenberg University in Mainz gathered some statistics, which show the
importance of small file I/O. They analyzed typical file systems in data centers and found out, that
90% of the files on actual file systems are only 4KB or less in size4. So even if the majority of file
system administrators consider benchmarks related to large file I/O to be the most important, the
University’s study clearly shows the significance of handling small files in a real-world environment.
As a result, we decided to specify a set of benchmarks, covering large block streaming throughput, as
well as small file I/O and metadata performance.

All of the following benchmarks have been performed by using the tools IOR5 and mdtest6. Each of
the measurements was run five times and the result was calculated as the mean average of the single
runs.

The command lines used to run the following benchmarks can be found in Appendix A.

3.1. Multi-stream throughput

In this benchmark the total throughput of sequential read and write requests with multiple streams
was measured.

This test was performed in two different ways. During the first measurement, a constant amount of
160 clients was used and the number of storage servers scaled from two to 20. The second test was
performed with all storage servers, increasing the number of clients up to 768.

3http://www.avetec.org/applied-computing/dice/projects/pfs/docs/PFS_Survey_Report_Mar2011.pdf
4A Study on Data Deduplication in HPC Storage Systems; Dirk Meister et al.; Johannes Gutenberg Universität; SC12
5http://sourceforge.net/projects/ior-sio/
6http://http://sourceforge.net/projects/mdtest/

c© 2013 Fraunhofer ITWM

4

Servers 2 4 6 8 10 12 14 16 18 20
Write (MB/s) 2657 5335 7892 10561 12782 15023 17345 20206 22823 25247
Read (MB/s) 2549 5162 7492 10112 11904 14543 17012 19123 21889 24789

0 2 4 6 8 10 12 14 16 18 20
0

5000

10000

15000

20000

25000

Write

Read

Storage Servers

M
B

/s

Figure 2: Sequential throughput, storage server scaling; 160 clients, 1-20 storage servers, 512k
transfer size, filesize of 150GB per server

Each file in this run was striped across four FhGFS storage servers with a chunk size of 512kb.

With two storage servers, the system achieved a throughput of 2 657 MB/s when writing and 2 549
MB/s when reading. As we added more storage servers to the system, performance scaled nearly
linear (Fig. 2). When using all 20 servers, a sustained write throughput of 25 247 MB/s and a sustained
read throughput of 24 789 MB/s was measured.

The local RAID of a single node delivered a sustained writing performance of 1 332 MB/s and a
sustained reading performance of 1 317 MB/s. With this information, one can calculate the maximum
throughput, which 20 servers are theoretically able to achieve and it can be seen that FhGFS could
provide 94% of this value (writing: 94.7%, reading: 94.1%).

With a constant number of 20 storage servers and an increasing number of client processes accessing
the file system, one can see, that the sustained performance was stable with a growing number of
clients, up to 768. (Fig. 3)

The minimum number of clients required to get the maximum performance was in the range between
96 and 192. Local benchmarks showed that at least six concurrent processes on a single machine
are needed to achieve the maximum local throughput. As this benchmark used the combined re-
sources of 20 machines, it is very reasonable that the amount of processes needed to reach maximum
performance must be about 20 times higher as on a single machine.

c© 2013 Fraunhofer ITWM

5

#Clients 6 12 24 48 96 192 384 768
Write (MB/s) 6123 10193 16337 20631 24796 25312 25190 25409
Read (MB/s) 6946 11524 18417 24093 23862 26621 25701 26649

6 12 24 48 96 192 384 768
0

5000

10000

15000

20000

25000

30000

Write

Read

Storage Servers

M
B

/s

Figure 3: Sequential throughput, client scaling; 20 storage servers, 6-768 clients, 512k transfer size,
filesize of 150GB per server

3.2. Shared file throughput

Servers 2 4 6 8 10 12 14 16 18 20
Write (MB/s) 1919 3326 4766 5766 6432 7239 8512 9591 11527 13278
Read (MB/s) 2510 4853 6552 8366 9384 10546 12709 14121 16012 17786

2 4 6 8 10 12 14 16 18 20
0

5000

10000

15000

20000

25000

Write

Read

Storage Servers

M
B

/s

Figure 4: Shared file throughput, storage server scaling; 192 clients, 1-20 storage servers, 600k
transfer size, filesize of 150GB per server

In this scenario clients accessed one single shared file and performed read and write operations on
it. Most applications access files in an unaligned manner, as the record size is defined by the type
of data and the used algorithms. Therefore we chose 600kb as transfer size in IOR. Of course, this
is not optimal for the file system, but by using an unaligned access pattern, we simulated real-world
examples. Once again, we performed two different measurements. The first one was with a constant
number of 160 clients and a growing number of storage servers. The second one used all storage

c© 2013 Fraunhofer ITWM

6

servers again, and scaled up to 768 clients sharing one single file. As we only wrote one file, we
needed to set the number of targets for this file to 20 to distribute it evenly over all servers.

The benchmarks showed a good scalability with a growing number of storage servers (Fig. 4). It
is notable, that the shared file write performance was only about 75% of the read performance. We
could also observe this behaviour by using the SSD disks directly on a local node (1 403 MB/s read
and 1 108 MB/s write), so this seems to be a general limitation of the used systems.

Clients 12 24 48 96 192 384 768
Write (MB/s) 7445 7749 10122 13122 13288 13212 13288

12 24 48 96 192 384 768
6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

Write

#Client processes

M
B

/s

Figure 5: Shared file throughput, client scaling; 20 storage servers, 6-768 clients, 600k transfer
size, filesize of 150GB per server

Shared file throughput on 20 servers, with a number of clients growing up to 768, showed that all
client processes can write to the same file without any notable performance loss (Fig. 5).

Once again, we reached the maximum performance at a point slightly higher than 96 client processes,
which corresponded with single node benchmarks. On a local node, six concurrent processes were
needed to achieve maximum performance.

3.3. IOPS

In this benchmark the I/O operations per second were measured. This value basically represents
the mean access time of the file system and is very important for dealing with small files and for
algortihms, which access files in a very random way. To measure this metric, 4k random writes were
used with a total number of 160 clients and a growing number of storage servers.

These measurements resulted in a perfectly linear scale. While two storage servers were able to
perform 109 992 operations/sec., one can observe 1 126 963 operations/sec. for 20 storage servers
(Fig. 6).

c© 2013 Fraunhofer ITWM

7

Servers 2 4 6 8 10 12 14 16 18 20
IOPS 109992 230230 346743 462212 580031 691146 802456 936410 1033324 1126963

2 4 6 8 10 12 14 16 18 20
50000

150000

250000

350000

450000

550000

650000

750000

850000

950000

1050000

1150000

Storage Servers

IO
P

S

Figure 6: IOPS; 1-20 storage servers, 160 clients

3.4. Metadata performance

Servers 1 2 4 6 8 10 12 14 16 18 20
Creates/sec 34693 68094 115423 194812 270832 331823 380321 423343 467542 506143 539724

2 4 6 8 10 12 14 16 18 20
30000

80000

130000

180000

230000

280000

330000

380000

430000

480000

530000

580000

Metadata Servers

F
ile

 c
re

a
te

s
/ s

e
c

Figure 7: File creation; 1-20 servers, up to 640 client procs (32*#MDS)

The number of file creates per second and the number of stat operations per second were determined
with an increasing number of metadata servers. The number of clients was always proportional to
to the number of servers and was calculated by multiplying the number of servers with 32. This is
important because benchmarks on a single node showed that the local RAID-arrays only perform well
when using between 20 and 40 accessing processes. Therefore we needed to adjust the number of
processes according to the number of used servers.

Both metadata performance benchmarks showed a rise in performance when adding new metadata
servers. While file creation rates on a single metadata server were in the range of 35 000, a file system
with 20 metadata servers was able to create significantly more than 500 000 files per second (Fig.
7). Stat call performance showed a rise from about 93 000 operations on one server to 1 381 339

c© 2013 Fraunhofer ITWM

8

operations on 20 servers (Fig. 8).

Servers 1 2 4 6 8 10 12 14 16 18 20
Stats/sec 93007 187844 320134 518401 623682 748334 871234 1043231 1192625 1288153 1381339

1 2 4 6 8 10 12 14 16 18 20
90000

190000

290000

390000

490000

590000

690000

790000

890000

990000

1090000

1190000

1290000

1390000

1490000

Metadata Servers

F
ile

 s
ta

ts
 /

se
c

Figure 8: Stat calls; 1-20 servers, up to 640 client procs (32*#MDS)

4. Conclusion

FhGFS was designed to be the primary choice for scratch filesystems in the HPC market. Our results
demonstrate that FhGFS is a highly scalable parallel filesystem and in most scenarios the throughput
performance is not limited by FhGFS itself, but only by the underlying hardware. Although metadata
benchmarks did not show a perfectly linear scalability, the results prove that adding metadata servers
to the system leads to a significant increase in metadata performance. Therefore it is easily possible
to load-balance metadata access in busy environments with a load of access from different users.

c© 2013 Fraunhofer ITWM

9

A. Used command lines for benchmarks

A.1. Multi-stream throughput

mpirun -hostfile /tmp/nodefile -np ${NUM_PROCS} \
/usr/bin/IOR -wr -C -i5 -t512k -b${BLOCK_SIZE} \
-F -o /mnt/fhgfs/test.ior

with ${NUM_PROCS} being 160 for the first test and increasing values from six to 768 for the second
test. The parameter ${BLOCK_SIZE} depends on the number of client processes and servers. Every
run writes and reads 150GB multiplied by the number of active servers of total data, so the individual
client process’ block size can be calculated by dividing this value by the number of client processes.

A.2. Shared file throughput

mpirun -hostfile /tmp/nodefile -np ${NUM_PROCS} \
/usr/bin/IOR -wr -C -i5 -t600k -b${BLOCK_SIZE} \
-o /mnt/fhgfs/test.ior

with ${NUM_PROCS} being 192 for the first test and increasing values from six to 768 for the second
test. The parameter ${BLOCK_SIZE} depends on the number of client processes and servers. Every
run writes and reads 150GB multiplied by the number of active servers of total data, so the individual
client process’ block size can be calculated by dividing this value by the number of client processes.

A.3. IOPS

mpirun -hostfile /tmp/nodefile -np 160 \
/usr/bin/IOR -w -C -i5 -t4k -b${BLOCK_SIZE} \
-F -z -o /mnt/fhgfs/test.ior

with ${BLOCK_SIZE} depending on the number of servers. Every run writes 150GB multiplied by
the number of active servers of total data, so the individual client process’ block size can be calculated
with (150GB ∗#servers)/160.

A.4. Metadata performance

For the create benchmark:

c© 2013 Fraunhofer ITWM

10

mpirun -hostfile /tmp/nodefile /tmp/nodefile -np ${NUM_PROCS} \
mdtest -C -d /mnt/fhgfs/mdtest -i 5 -I ${FILES_PER_DIR} -z 2 \
-b 8 -L -u -F

For the stat benchmark:

mpirun -hostfile /tmp/nodefile /tmp/nodefile -np ${NUM_PROCS} \
mdtest -T -d /mnt/fhgfs/mdtest -i 5 -I ${FILES_PER_DIR} -z 2 \
-b 8 -L -u -F

with ${NUM_PROCS} being #servers ∗ 32. The total amount of files should always be higher than
1 000 000, so ${FILES_PER_DIR} is calculated as
${FILES_PER_DIR} = d1000000/64/$NUM_PROCSe.

c© 2013 Fraunhofer ITWM

	Introduction
	Environment
	Benchmark specifications and results
	Multi-stream throughput
	Shared file throughput
	IOPS
	Metadata performance

	Conclusion
	Used command lines for benchmarks
	Multi-stream throughput
	Shared file throughput
	IOPS
	Metadata performance

